C₆₀ as Photosensitizing Electron-Transfer Mediator for Ion-Pair Charge-Transfer Complexes between Borate Anions and Methyl Viologen Dication

Toshifumi Konishi,[†] Mamoru Fujitsuka,[†] Osamu Ito,^{*,†} Yasumasa Toba,[‡] and Yoshiharu Usui[§]

Institute for Chemical Reaction Science, Tohoku University, Katahira, Aoba-ku, Sendai, 980-8577, Japan, Tsukuba Research Laboratory, Toyo Ink, 27, Wadai, Tsukuba, 300-4247, Japan, and Graduate School of Science and Engineering, Ibaraki University, Bunkyo, Mito, 310-8512, Japan

Received: June 28, 1999; In Final Form: September 20, 1999

Photochemical reactions between the excited triplet state of C_{60} and the ion-pair charge-transfer complex which consists of electron-acceptor cation (methyl viologen (MV²⁺)) and electron-donor anion (organo borates (^{BPh₃R, where R = Ph or Bu)) have been investigated by both steady-state and laser-flash photolysis. By photoirradiation of C_{60} in the presence of $MV^{2+}(^BPh_3R)_2$ in organic solvents, the amount of MV^{+*} increases with irradiation time, and persists for a long time even in the dark. From the laser-flash photolysis, it is found that electron transfer proceeds via $^{3}C_{60}^{*}$ from $^{-}BPh_3R$ in the complex, yielding $^{*}BPh_3R$ and C_{60}^{-*} . Although generated C_{60}^{-*} does not decay in the absence of MV^{2+} because of the rapid dissociation of $^{*}BPh_3R$, in the presence of MV^{2+} , C_{60}^{-*} decays quickly by transferring an electron to MV^{2+} yielding MV^{+*} . Thus, it is proved that C_{60} acts as a photosensitizer for pumping up an electron from $^{-}BPh_3R$ as well as an electron mediator to MV^{2+} . In these systems, MV^{+*} persists even in air-saturated solution for more than an hour, suggesting that the electron transfer from MV^{+*} to O_2 is retarded.}

Introduction

Because of the high π -electron densities on the round molecules, fullerenes have unique reactivities¹ and properties such as electric conductivity,² superconductivity,³ ferromagnetism,⁴ and photoconductivity.⁵ Fullerenes act the role of an effective visible-light photosensitizer. Recently, we have reported an efficient photoinduced electron transfer between C₆₀ and organo borates (⁻BPh₃R, where R = Ph, Bu) in polar solvents, yielding persistent anion radical of C₆₀ (C₆₀^{-•}) and C₆₀ adduct anion (RC₆₀⁻).⁶ The ⁻BPh₃R derivatives are known as good electron donors depressing the back electron transfer, because the boranyl radical (•BPh₃R) produced after electron donation easily dissociates into BPh₃ and R[•] (yielding mainly R–R) with poor electron-accepting abilities.^{7,9}

It was also reported that ⁻BPh₃R is used as an effective alkyl radical source for photoinduced radical alkylation and radical polymerization.^{7–9,10(a–e)} Photosensitized electron-transfer reactions of onium borate compounds containing both electron-accepting radical generator and electron-donating radical generator within the same ion pair lead to the effective photoinitiated radical polymerization of vinyl monomers such as acrylates.^{10(f,g),11} An onium borate compounds containing stable cation such as $MV^{2+}(-BPh_3R)_2$ would be expected to possess high-efficiency for photoinduced charge separation.

In the present paper, we report that electron transfer between $^{-}BPh_{3}R$ and MV^{2+} is effectively induced by photoexcitation of C₆₀. Methyl viologen cation radical ($MV^{+\bullet}$) accumulates with the photoirradiation and persists even in aerated organic solvents. By observing the transient absorption in the near-IR region, the electron-transfer mechanism was examined. Electron transfer from $^{-}BPh_{3}R$ to MV^{2+} proceeds efficiently through the sensitization and electron mediation by C₆₀.

Experimental Section

Materials. Tetrabutylammonium triphenylbutylborate (-BPh₃Bu (⁺NBu₄)) and tetrabutylammonium tetraphenylborate (⁻BPh₄ (⁺NBu₄)) were prepared by the method described in the literature.¹² Methyl viologen chloride $(MV^{2+}(Cl^{-})_2)$ was obtained from Tokyo Chemical Industries Co., Ltd. Methyl viologen bis(tetraphenylborate) (MV²⁺(-BPh₄)₂) was prepared as described in a previous report.¹³ Methyl viologen bis-(triphenylbutylborate) (MV²⁺(⁻BPh₃Bu)₂) was prepared from $MV^{2+}(Cl^{-})_2$ and $^{-}BPh_3Bu$ ($^{+}NBu_4$) in 80% yield (as MV^{2+} recovery): A methanol solution (50 mL) of $MV^{2+}(Cl^{-})_2$ (0.3) mmol) was added to ⁻BPh₃Bu (⁺NBu₄) (1.8 mmol) in methanol (450 mL) under stirring. While the reaction mixture was stored in the dark at room temperature for 3 days, red needlelike crystals were deposited. The crystals were washed vigorously by methanol and then dried in vacuo. Anal. Calcd. for C₅₆H₆₂N₂B₂: C, 85.7; H, 7.96; N, 3.57. Found: C, 85.6; H, 8.06; N. 3.60.

 C_{60} was obtained from Texas Fullerenes Corp. in a purity of 99.9%. Extra-pure grade benzonitrile (BN), *o*-dichlorobenzene (DCB), and THF were used as solvent.

Steady-State Photolysis and Measurements. All of the steady-state photolysis studies were performed with visible light from a Xe–Hg arc lamp (150 W) equipped with a cutoff filter ($\lambda > 580$ nm) in order to excite C₆₀ selectively. The UV/visible absorption spectra were measured with a JASCO V-570 spectrophotometer before and after photoirradiation of the solution. To make air-saturated solution, air was kept in contact with the solution during experiments. All experiments were carried out at 20 °C.

Laser-Flash Photolysis. Transient absorption spectra and the absorption—time profiles of transient species were measured by the selective excitation of C_{60} with 610 nm laser light from an OPO laser (HOYA continuum Surelite OPO, 6 ns fwhm, and 21 mJ/pulse). For the transient absorption spectra in the near-IR region, an InGaAs-PIN photodiode (Hamamatsu Pho-

[†] Tohoku University.

[‡] Tsukuba Research Laboratory.

[§] Ibaraki University.

Figure 1. Absorption spectral changes observed during photoirradiation of C_{60} (0.1 mM) in the presence of $MV^{2+}(-BPh_3Bu)_2$ (0.05 mM) in BN; optical path length = 1.0 cm.

tonics C5125–10) was employed as a detector for a probe light from a steady 150 W Xe-lamp equipped with cutoff filters to avoid the further photolysis. A sample solution in a rectangular quartz reaction cell was deaerated by Ar gas bubbling for 25 min before the experiment.

Results and Discussion

Steady-State Photolysis of C₆₀ in the Presence of MV^{2+} -(⁻BPh₃R)₂. MV^{2+} (Cl⁻)₂ and ⁻BPh₃R (⁺NBu₄) (R = Ph, Bu) showed absorption bands in a wavelength region shorter than 325 nm in solvent; however, $MV^{2+}(^{-}BPh_{3}R)_{2}$ exhibited absorption in the visible region (<530 nm), which can be attributed to a charge-transfer (CT) interaction between MV^{2+} and ⁻BPh₃R. $MV^{2+}(^{-}BPh_{3}R)_{2}$ is considered to be an ion-pair CT complex.^{13,14} An absorption of mixed solution of C₆₀ and $MV^{2+}(^{-}BPh_{3}R)_{2}$ is almost identical to the summation spectrum of each compound, indicating no interaction between C₆₀ and $MV^{2+}(^{-}BPh_{3}R)_{2}$ in the ground state.

By the steady photoirradiation of C_{60} with light longer than 580 nm in the presence of MV²⁺(-BPh₃Bu)₂ in deaerated benzonitrile (BN), a new absorption band appeared at 605 nm with a shoulder at 400 nm (Figure 1), which can be attributed to MV^{+•.15} For C₆₀/MV²⁺(⁻BPh₄)₂, a similar spectral change was observed. It is clear that MV^{+•} is not generated by direct light illumination to $MV^{2+}(-BPh_3R)_2$, because of negligible light absorption of $MV^{2+}(-BPh_3R)_2$ at the longer wavelength (>580 nm). In the case of photoillumination of C_{60} with $^-BPh_3R$ (⁺NBu₄), generation of $C_{60}^{\bullet-}$ was observed at 1075 nm, because the back electron transfer from $C_{60}^{\bullet-}$ to ${}^{\bullet}BPh_3R$ is hindered by the rapid dissociation of •BPh₃R.⁶ In the presence of MV²⁺- $(^{-}BPh_{3}R)_{2}$, however, the absorption band due to $C_{60}^{\bullet-}$ did not appear, indicating that $C_{60}^{\bullet-}$ is not persistent in the C_{60}/MV^{2+-} $(^{-}BPh_{3}R)_{2}$ system.¹⁶ This observation suggests that $C_{60}^{\bullet-}$ formed by accepting an electron from -BPh3R via photoinduced electron transfer is consumed completely by donating an electron to MV^{2+} . This may imply that C_{60} acts as a photosensitizer as well as an electron mediator, successively transferring an electron from ⁻BPh₃R to MV²⁺ as a whole.

Figure 2 shows the absorption time profiles of $MV^{+\bullet}$ during and after steady photoirradiation. In the deaerated $C_{60}/MV^{2+}(^{-}BPh_3Bu)_2$ or $C_{60}/MV^{2+}(^{-}BPh_4)_2$ system, $MV^{+\bullet}$ concentration exhibited a saturation at 300 s (Figure 2a and b). In the aerated solutions, a very slight buildup of $MV^{+\bullet}$ was observed for $C_{60}/MV^{2+}(^{-}BPh_3Bu)_2$ (Figure 2c); the rise of $MV^{+\bullet}$ was negligibly low for $C_{60}/MV^{2+}(^{-}BPh_4)_2$ (Figure 2d). It

Figure 2. Absorption—time profiles during and after steady photoirradiation of C_{60} (0.1 mM) in the presence of (a) $MV^{2+}(_BPh_3Bu)_2$ and (b) $MV^{2+}(_BPh_4)_2$, in Ar-saturated BN, and (c) $MV^{2+}(_BPh_3Bu)_2$ and (d) $MV^{2+}(_BPh_4)_2$ in aerated BN; $[MV^{2+}(_BPh_3R)_2] = 0.05$ mM and optical path length = 1.0 cm.

suggests that the MV^{+•} formation takes place via ${}^{3}C_{60}^{*}$, which is easily quenched by O₂ as well as ${}^{-}BPh_{3}R.{}^{17}$ The contribution of excited singlet state of C₆₀ (${}^{1}C_{60}^{*}$) to the MV^{+•} formation should be quite low, because of the fast intersystem crossing rate from ${}^{1}C_{60}^{*}$ to ${}^{3}C_{60}^{*}$ under the low concentration of MV²⁺(${}^{-}BPh_{3}R)_{2}$.

When the light was turned off after generating the maximal concentration of $MV^{+\bullet}$ in the deaerated $C_{60}/MV^{2+}(^{-}BPh_{3}R)_{2}$ solution, the concentration of MV^{+•} remained for a long time. Furthermore, when air was introduced into the MV^{+•} solution, MV^{+•} was quenched very slowly (Figure 2). MV^{+•} persisted for over an hour even under shaking with air, in which the O_2 concentration (ca. 2 mM) is far excess to the amount of MV^{+•} by a factor of ca. 100. It was reported that MV^{+•} is rapidly consumed by electron transfer to O₂ dissolving in solvents.¹⁸ However, the present observation indicates that the persistent MV^{+•} is protected from O₂ oxidation by some mechanisms in these reaction systems. This stabilization mechanism is hard to explain. It seems that $MV^{+\bullet}$ is not stabilized by $C_{60}^{-\bullet}$, but by ⁻BPh₃R for some mechanisms such as a steric encumbrance, since persistent MV^{+•} is also formed via direct illumination to IPCT-band of MV²⁺(⁻BPh₃R)₂.

When $[C_{60}] \ll [MV^{2+}(-BPh_3R)_2]$ (Figure 3), the maximal concentration of $MV^{+\bullet}$ was higher than $[C_{60}]$ by factors of 3–4, suggesting that C_{60} acts as a photocatalyst during irradiation (Figure 3). At the latter periods of irradiation, some differences in the rise rate and final concentrations of $MV^{+\bullet}$ were observed between $MV^{2+}(-BPh_3Bu)_2$ and $MV^{2+}(-BPh_4)_2$. The findings may be attributed to slight differences in the reactivities between $-BPh_3Bu$ and $-BPh_4$. On the other hand, at the initial phase of the photocatalytic cycle the difference was not observed (Figure 2).

The internal light-shielding effect due to absorption of MV⁺• will suppress this photocatalytic cycle.

Laser-Flash Photolysis of C₆₀ and MV²⁺(⁻BPh₃R)₂. Figure 4 shows the transient absorption spectra obtained by 610 nm laser excitation of C₆₀ in the presence of MV²⁺(⁻BPh₃Bu)₂ in Ar-saturated BN. The transient absorption band at 740 nm appearing immediately after laser exposure is attributed to ${}^{3}C_{60}^{*}$.²⁰ With the decay of ${}^{3}C_{60}^{*}$, a new absorption band appeared at 600 nm, which can be attributed to MV^{+•}. The weak absorption at 1070 nm is attributable to C₆₀^{-•.20} Because the decay rate of ${}^{3}C_{60}^{*}$ in the presence of MV²⁺(⁻BPh₃Bu)₂ is

Figure 3. Absorption—time profiles during steady photoirradiation on C_{60} (0.02 mM) in the presence of $MV^{2+}(-BPh_3R)_2$ (0.2 mM): (a) $MV^{2+}(-BPh_3Bu)_2$ and (b) $MV^{2+}(-BPh_4)_2$ in deaerated BN (optical path length = 0.5 cm).

Figure 4. Transient absorption spectra obtained by 610 nm laser flash photolysis of C₆₀ (0.1 mM) in the presence of $MV^{2+}(-BPh_3Bu)_2$ (0.2 mM) in Ar-saturated BN. \bullet (1 μ s), \bigcirc (10 μ s). Inset: time profiles.

similar to that with ⁻BPh₃Bu (⁺NBu₄) at the same concentration, electron transfer takes place from ⁻BPh₃Bu to ³C₆₀*, yielding C₆₀^{-•}. Generated C₆₀^{-•} from MV²⁺(⁻BPh₃Bu)₂ decayed quickly, which indicates fast electron transfer from C₆₀^{-•} to MV²⁺, yielding MV^{+•}. From comparison of the decay curve of C₆₀^{-•} with that of ⁻BPh₃Bu (⁺NBu₄), the rate constant for electron transfer from C₆₀^{-•} to MV²⁺ was evaluated to be 2.8 × 10⁹ M⁻¹ s⁻¹ (in BN). The decay rate of C₆₀^{-•} is too fast to observe the initial concentration of C₆₀^{-•} immediately after laser flash in Figure 4.

To confirm the electron transfer from $C_{60}^{-\bullet}$ to MV^{2+} , the stepwise experiments were designed as shown in Figure 5A. It is shown that persistent $C_{60}^{-\bullet}$ was at first produced via electron transfer from ⁻BPh₃Bu (⁺NBu₄) in THF/DCB mixed solvent (1:1). ⁻BPh₃R (⁺NBu₄) was denoted as donating anion (DA) in this study, because only the anion site has electron-donating ability. In this time region, the decay rate of $C_{60}^{-\bullet}$ generated from ⁻BPh₃Bu (⁺NBu₄) is quite slow. However, by addition of $MV^{2+}(^{-}BPh_3Bu)_2$ to the $C_{60}/^{-}BPh_3Bu$ (⁺NBu₄) solution, the decay rate of $C_{60}^{-\bullet}$ increased with generating $MV^{+\bullet}$ (Figure 5B). The decay curve of $C_{60}^{-\bullet}$ is a mirror image of the rise curve of $MV^{+\bullet}$, indicating electron transfer from $C_{60}^{-\bullet}$ to MV^{2+} . From

Figure 5. Time absorption profiles of C_{60} ^{-•} after laser photolysis of C_{60} (0.1 mM) (A) in the presence of ⁻BPh₃Bu (⁺NBu₄) (2.0 mM) and (B) further addition of MV²⁺(⁻BPh₃Bu)₂ (0.05 mM) in Ar-saturated THF/DCB (1:1).

SCHEME 1

$${}^{3}C_{60}^{\bullet} + MV^{2+}(BPh_{3}R)_{2} \xrightarrow{k_{et}} C_{60}^{\bullet} + MV^{2+}BPh_{3}R + BPh_{3} + 1/2 R R$$

$$\downarrow hv$$

$$k_{M} \downarrow \Phi_{M}$$

$$C_{60} + MV^{*+}BPh_{3}R = Bu, Ph$$

the decay curve of $C_{60}^{-\bullet}$ and the rise curve of $MV^{+\bullet}$, the rate constant for electron transfer from $C_{60}^{-\bullet}$ to MV^{2+} was evaluated as 2.0 × 10⁹ M⁻¹ s⁻¹ (in THF/DCB). This electron transfer process is slightly suppressed by the low solvent polarity.

From these observations, the major photoreaction process for $C_{60}/MV^{2+}(^{-}BPh_3Bu)_2$ can be illustrated in Scheme 1. The photoreaction between C_{60} and $MV^{2+}(^{-}BPh_3Bu)_2$ is initiated by the reductive quenching of ${}^{3}C_{60}^{*}$, and followed by extraelectron transfer between $C_{60}^{-\bullet}$ and MV^{2+} , yielding $MV^{+\bullet}$ and C_{60} . The coupling reaction⁶ between $C_{60}^{-\bullet}$ and Bu[•] is completely hindered by fast electron transfer between $C_{60}^{-\bullet}$ and MV^{2+} , which can be deduced by the high yield of $MV^{+\bullet}$ ($\Phi_{MV}^{+\bullet} = 1.0$, which is described in a later section).

In the case of MV²⁺(⁻BPh₄)₂ and C₆₀ in BN, weak absorption bands were observed at 980 and 1070 nm in addition to MV+• at 600 nm as shown in Figure 6. These weak bands at 980 and 1070 nm are attributed to $C_{60}^{+\bullet}$ and $C_{60}^{-\bullet}$, respectively. The formation of C₆₀^{+•} may indicate that direct electron transfer from ${}^{3}\mathrm{C}_{60}{}^{*}$ to MV^{2+} occurs, which may appear due to a slower electron-transfer rate from $^{-}BPh_4$ to $^{3}C_{60}$ * than that of C_{60} / $MV^{2+}(^{-}BPh_{3}Bu)_{2}.$ The rise of $MV^{+\bullet}$ at 600 nm may include MV^{+•} formed via both the reductive and oxidative quenching of ${}^{3}C_{60}*$ by ${}^{-}BPh_{4}$ and MV^{2+} , respectively. The decay of $C_{60}+$ may be due to electron transfer from ⁻BPh₄. The rate constant was evaluated to be 5.1 \times $10^8~M^{-1}~s^{-1}.$ After donating an electron, -BPh4 rapidly dissociates into BPh3 and Ph-Ph (biphenyl);9c thus, MV+• produced by this route is also persistent. The high quantum yield for MV^{+•} formation from $C_{60}/MV^{2+}(^{-}BPh_4)_2$ ($\Phi_{MV}^{+\bullet} = 1.0$, which is described in a later section) supports this reaction scheme.

To confirm the reactivity for the direct electron-transfer process from ${}^{3}C_{60}{}^{*}$ to MV^{2+} , the transient spectra were

TABLE 1: Rate Constants and Quantum Yields for Electron Transfer Processes

quencher	type ^a	solvent	$k_{\rm q} ({ m M}^{-1}~{ m s}^{-1})$	$\Phi_{ ext{T}}{}^{b}$	$k_{\rm et} ({ m M}^{-1}~{ m s}^{-1})$	$\Phi_{\rm MV}{}^{+\bullet}$
MV ²⁺ (-BPh ₃ Bu) ₂	IPCT	BN	2.4×10^{9}	(1.0)	2.4×10^{9}	1.0
$MV^{2+}(-BPh_3Bu)_2$	IPCT	THF/DCB	2.0×10^{9}	(0.52)	1.0×10^{9}	0.52^{d}
$MV^{2+}(-BPh_4)_2$	IPCT	BN	1.8×10^{8}	(1.0)	1.8×10^{8}	1.0
$MV^{2+}(-PF_6)_2$	AC	BN	1.6×10^{7}	(0.15)	2.4×10^{6}	0.15
⁻ BPh ₃ Bu (⁺ NBu ₄) ^c	DA	BN	1.4×10^{9}	1.0	1.4×10^{9}	
⁻ BPh ₃ Bu (⁺ NBu ₄)	DA	THF/DCB	2.0×10^{9}	1.0	2.0×10^{9}	
⁻ BPh ₃ Bu (⁺ NBu ₄) ^c	DA	DCB	4.2×10^{8}	1.0	1.4×10^{9}	
$^{-}\mathrm{BPh}_4\ (^{+}\mathrm{NBu}_4)^c$	DA	BN	3.5×10^{7}	0.88	3.1×10^{7}	
$^{-}\text{BPh}_4 (^{+}\text{NBu}_4)^c$	DA	DCB	2.8×10^{7}	0.75	2.1×10^{7}	

^{*a*} Types of quenchers; IPCT (ion pair charge transfer), AC (accepting cation), and DA (donating anion). ^{*b*} Φ_T in parentheses is evaluated on assuming $\Phi_M = 1.0^{-c}$ From ref 6. ^{*d*} The maximal Φ_{MV}^{+*} cannot be performed because of low solubility to THF/DCB. *Pseudo-first-order plots of MV²⁺(-BPh₄)₂ and MV²⁺(PF₆-)₂ could not be performed because of poor solubility to THF/DCB.

Figure 6. Transient absorption spectra obtained by 610 nm laser flash photolysis of C₆₀ (0.1 mM) in the presence of $MV^{2+}(^{-}BPh_{4})_{2}$ (0.5 mM) in Ar-saturated BN. \bullet (2.5 μ s), \bigcirc (25 μ s). Inset: time profiles.

Figure 7. Transient absorption spectrum obtained by 610 nm laser flash photolysis of C₆₀ (0.1 mM) in the presence of $MV^{2+}(-PF_{6})_2$ (0.5 mM) in Ar-saturated BN. \bullet (5 μ s), \bigcirc (50 μ s). Inset: time profiles.

measured by 610-nm laser exposure of C_{60} in the presence of $MV^{2+}(^{-}PF_{6})_{2}$ in BN (Figure 7). The decay of $^{3}C_{60}^{*}$ was slightly accelerated and a weak rise of $MV^{+\bullet}$ at 600 nm was observed. Because the electron-transfer rate from $^{-}PF_{6}$ to $^{3}C_{60}^{*}$ is anticipated to be extremely slow, direct electron transfer from $^{3}C_{60}^{*}$ to MV^{2+} takes place yielding $MV^{+\bullet}$ and $C_{60}^{+\bullet}$. $MV^{2+}(^{-}PF_{6})_{2}$, in which only the cation site has electron-accepting ability, was denoted as accepting cation (AC) in this study. The efficiency and rate constant for electron transfer between $^{3}C_{60}^{*}$ and MV^{2+} is small ($\Phi_{MV}^{+\bullet} = 0.15$, $k_{et} = 2.4 \times 10^{6} M^{-1} s^{-1}$).

Figure 8. The time–absorption profile of ${}^{3}C_{60}^{*}$ and MV^{+} obtained by laser exposure to C_{60} in the presence of $MV^{2+}({}^{-}BPh_{3}Bu)_{2}$ in (a) Ar-saturated BN and (b) aerated BN. $[C_{60}] = 0.1 \text{ mM}$ and $[MV^{2+}({}^{-}BPh_{3}Bu)_{2}] = 0.2 \text{ mM}$.

SCHEME 2

In our previous study,⁶ we have revealed the high quantum yield (0.88) for $C_{60}^{-\bullet}$ formation by the illumination of the C_{60} / ⁻BPh₄(⁺NBu₄) system despite a relatively small rate constant for electron transfer ($k_{et} = 3.1 \times 10^7 \text{ M}^{-1}\text{S}^{-1}$ in BN). From these findings, we can deduce that the electron transfer between ³C₆₀* and ⁻BPh₄ (reductive quenching) is the major reaction path (Scheme 1). The rate for electron transfer between ³C₆₀* and ⁻BPh₄ may be enhanced by IPCT interaction to overcome competing MV²⁺. In the case of oxidative quenching of ³C₆₀* by MV²⁺, MV^{+•} also becomes persistent because the back electron transfer from MV^{+•} to C₆₀^{+•} is suppressed by electron transfer from ⁻BPh₄ to C₆₀^{+•}, yielding fast dissociative *****BPh₄ (Scheme 2).

In an aerated solution of $C_{60}/MV^{2+}(-BPh_3Bu)_2$, ${}^{3}C_{60}^{*}$ was rapidly quenched by O₂ (Figure 8), which results in a prominent decrease in MV^{+•} formation (Figure 8 inset), because O₂ decreases the yield of $C_{60}^{-\bullet}$. This is caused by energy transfer from ${}^{3}C_{60}^{*}$ to O₂, which competes with electron transfer from $-BPh_3Bu$ to ${}^{3}C_{60}^{*}$. Under the condition of $[O_2] \gg [MV^{2+}-(-BPh_3Bu)_2]$, the quenching of ${}^{3}C_{60}^{*}$ by O₂ became predominant, suppressing the formation of $C_{60}^{-\bullet}$. This is the reason why $MV^{+\bullet}$ was not accumulated by the steady photolysis in the presence of O₂ (Figure 2). Because the rate for electron transfer between $C_{60}^{-\bullet}$ and MV^{2+} is very fast, $C_{60}^{-\bullet}$ may be almost quantitatively consumed by MV^{2+} , but not by competing O_2 .

On the other hand, when O_2 was introduced into reaction solution after the $MV^{+\bullet}$ formation, $MV^{+\bullet}$ was persistent as shown in Figure 2; this clearly suggests that electron transfer from $MV^{+\bullet}$ to O_2 is suppressed, which may be related to the structural environment of $MV^{+\bullet}$ in the ion pairs in solution.

From the laser-flash experiments, the decay curve of ${}^{3}C_{60}*$ obeys first-order kinetics in the presence of an excess amount of $MV^{2+}(^{-}BPh_{3}R)_{2}$ with respect to $[^{3}C_{60}*]$. The second-order rate-constants (k_{α}) were obtained by plotting the first-order rate constants with $[MV^{2+}(-BPh_3R)_2]$. The quantum yield of the $MV^{+\bullet}$ formation via ${}^{3}C_{60}^{*}$ ($\Phi_{MV}^{+\bullet}$) was estimated from the time profiles as shown in Figure 4. From comparison of the maximum concentration of ${}^{3}C_{60}{}^{*}$ and $MV^{+\bullet}$ after laser flash, 17,19,20 the $\Phi_{MV}^{+\bullet}$ was evaluated to be 1.0 in BN. The $\Phi_{MV}^{+\bullet}$ is defined as multiplying two quantum yields; one is the quantum yield for electron transfer from ${}^{-}BPh_{3}R$ to ${}^{3}C_{60}*(\Phi_{T})$, another is that from $C_{60}^{-\bullet}$ to MV^{2+} (Φ_M). Since the total quantum yield $(\Phi_{MV}^{+\bullet})$ is 1.0, Φ_T and Φ_M must be 1.0. The Φ_M value also can be evaluated to be about 1.0 from Figure 6. The rate constant for electron transfer between ${}^{3}C_{60}^{*}$ and $MV^{2+}(-BPh_{3}R)_{2}$ (k_{et}) can be evaluated by the relation, $k_{\rm et} = \Phi_{\rm T} k_{\rm q}$. Thus, $k_{\rm q}$ can be put equal to k_{et} as summarized in Table 1. Since the Φ_M values are close to unity, $\Phi_{\rm T}$ can be put equal to $\Phi_{\rm MV}^{+\bullet}$.

For MV²⁺(⁻BPh₃Bu)₂, the k_{et} values in polar solvent (BN) are larger than the corresponding values in less polar solvent (THF/DCB). This suggests that the donor ability of ⁻BPh₃Bu in loose ion pair with MV²⁺ is more reactive than that in the contact ion pair. Since the difference in the $k_{\rm M}$ and $\Phi_{\rm M}$ values between contact ion pair and loose ion pair is not experimentally prominent, the difference seems to be not large. The k_{et} value between ${}^{3}C_{60}{}^{*}$ and $MV^{2+}({}^{-}BPh_{3}Bu)_{2}$ is larger than that of $MV^{2+}({}^{-}BPh_{4})$, which is the same tendency with k_{et} of borate anions (DA). Since ${}^{-}BPh_{3}Bu$ (${}^{+}NBu_{4}$) is more reactive to ${}^{3}C_{60}{}^{*}$ than $MV^{2+}({}^{-}PF_{6})_{2}$ by a factor of 100 (in Table 1), it should be concluded that ${}^{3}C_{60}{}^{*}$ is quenched by ${}^{-}BPh_{3}Bu$ rather than MV^{2+} .

By comparison of $\Phi_T (= \Phi_{MV}^{+\bullet})$ and k_{et} for $-BPh_4$ ($+NBu_4$) with those for $MV^{2+}(-PF_6)_2$, the partition of electron transfer from ${}^{3}C_{60}^{*}$ to MV^{2+} for $MV^{2+}(-BPh_4)$ is presumed to be very small.

Concluding Remark

Photoinduced electron transfer between C_{60} and MV^{2+} -(⁻BPh₃R)₂ occurs mainly from ⁻BPh₃R to ³C₆₀*, yielding $C_{60}^{-\bullet}$ and [•]BPh₃R. Since the back electron transfer is suppressed, the quantitative formation of $MV^{+\bullet}$ is realized through the intermediary of C_{60} . C_{60} is a good photocatalyst because its ion radicals have long half-lives and high yields of extraelectron transfer. This photocatalytic cycle is continued until suppression by the internal light shielding effect of $MV^{+\bullet}$. We found that ⁻BPh₃Bu and ⁻BPh₄ are efficient electron donors of MV^{2+} , yielding persistent $MV^{+\bullet}$ with a high efficiency. We revealed that C_{60} is an effective sensitizer which can act as a good electron mediator to construct the photosensitization reaction.

Acknowledgment. The present work was partly supported by the Grant-in-Aid on Scientific Research B (No. 11440211) from the Ministry of Education, Science, Sports and Culture.

References and Notes

(f) Thomas, K. G.; Biju, V.; George, M. V.; Guldi, D. M.; Kamat, P. V. J. Phys. Chem. A 1998, 102, 5341. (g) Guldi, D. M.; Torres-Garcia, G.; Mattay, J. J. Phys. Chem. A 1998, 102, 9679. (h) Mohan, H.; Palit, D. K.; Mittal, J. P.; Chiang, L. Y.; Asmus, K.-D.; Guldi, D. M. J. Chem. Soc., Faraday Trans. 1998, 94, 359. (i) Brezová, V.; Stasko, A.; Asmus, K.-D.; Guldi, D. M. J. Photochem. Photobiol. A: Chem. 1998, 117, 61. (j) Fukuzumi, S.; Suenobu, T.; Kawamura, S.; Ishida, A.; Mikami, F. Chem. Commun. 1997, 291. (k) Fukuzumi, S.; Nakanishi, I.; Maruta, J.; Yorisue, T.; Suenobu, T.; Itoh, S.; Arakawa, R.; Kadish, K. M. J. Am. Chem. Soc. 1998, 120, 6673. (l) Fukuzumi, S.; Suenobu, T.; Patz, M.; Hirasaka, T.; Itoh, S.; Fujitsuka, M.; Ito, O. J. Am. Chem. Soc. 1998, 120, 8060.

(2) (a) Moriyama, H.; Kobayashi, H.; Kobayashi, A.; Watanabe, T. *Chem. Phys. Lett.* **1995**, *238*, 116. (b) Moriyama, H.; Abe, M.; Motoki, H.; Watanabe, T.; Hayashi, S.; Kobayashi, H. *Synth. Met.* **1998**, *94*, 167.

(3) (a) Hebard, A. F.; Rosseinsky, M. J.; Haddon, R. C.; Murphy, D. W.; Glarum, S. H.; Palstra, T. T. M.; Ramirez, A. P.; Kortan, A. R. *Nature* **1991**, *350*, 600. (b) Tanigaki, K.; Ebbesen, T. W.; Sato, J.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. *Nature* **1991**, *352*, 222.

(4) (a) Allemand, P.-K.; Khemani, K. C.; Koch, A.; Eudl, F.; Holczer, K.; Donovan, S.; Gruner, G.; Thompson, J. D. Science 1991, 253, 301. (b) Tanaka, K.; Zakhidov, A. A.; Yoshizawa, K.; Okahara, K.; Yamabe, T.; Yasuki, K.; Kikuchi, K.; Sizuki, S.; Ikemoto, I.; Achiba, Y. Phys. Lett. A 1992, 164, 354. (c) Buntar, V.; Sauerzopf, F. M.; Weber, H. W. Aust. J. Phys. 1997, 50, 329. (d) Hino, S.; Umishima, K.; Iwasaki, K.; Tanaka, K.; Sato, T.; Yamabe, T.; Yoshizawa, K.; Okahara, K. J. Phys. Chem. A 1997, 101, 4346. (e) Pokhodnia, K.; Demsar, J.; Omerzu, A.; Mihailovic, D.; Kuzmany, H. Synth. Met. 1977, 85, 1749.

(5) (a) Wang, Y. Nature **1992**, 356, 585. (b) Yoshino, K.; Xiao, H. Y.; Nuro, K.; Kiyomatsu, S.; Morita, S.; Zakihdov, A. A.; Noguchi, T.; Ohnishi, T. Jpn. J. Appl. Phys. **1993**, 32, L357. (c) Wang, Y.; West, R.; Yuan, C.-H. J. Am. Chem. Soc. **1993**, 115, 3844. (d) Kepler, R. G.; Cahill, P. A. Appl. Phys. Lett. **1993**, 63, 1552. (e) Kraabel, B.; McBranch, D.; Sariciftci, N. S.; Moses, D.; Heeger, A. J. Phys. Rev. B **1994**, 50, 18543.

(6) Konishi, T.; Sasaki, Y.; Fujitsuka, M.; Toba, Y.; Moriyama, H.; Ito, O. J. Chem. Soc., Perkin Trans. 2 **1999**, 551.

(7) Murphy, S. T.; Zou, C.; Miers, J. B.; Ballew, R. M.; Dlott, D. D.; Schuster, G. B. J. Phys. Chem. **1993**, *97*, 13152.

(8) (a) Lan, J. Y.; Schuster, G. B. J. Am. Chem. Soc. 1985, 107, 6710.
(b) Lan, J. Y.; Schuster, G. B. Tetrahedron Lett. 1986, 27, 4261. (c) Chatterjee, S.; Gottschalk, P.; Davis, P. D.; Schuster, G. B. J. Am. Chem. Soc. 1988, 110, 2326. (d) Zou, C.; Miers, J. B.; Ballew, R. M.; Dlott, D. D.; Schuster, G. B. J. Am. Chem. Soc. 1991, 113, 7823.

(9) (a) Chatterjee, S.; Davis, P. D.; Gottschalk, P.; Kurtz, M. E.; Sauerwein, B.; Yang, X.; Schuster, G. B. J. Am. Chem. Soc. **1990**, 112, 6329. (b) Hassoon, S.; Sarker, A.; Rodger, M. A.; Neckers, D. C. J. Am. Chem. Soc. **1995**, 117, 11369. (c) Hassoon, S.; Neckers, D. C. J. Phys. Chem. **1995**, 99, 9416.

(10) (a) Sarker, A. M.; Kaneko, Y.; Nikolaitchik, A. V.; Neckers, D. C. J. Phys. Chem. A 1998, 102, 5375. (b) Popielarz, R.; Sarker, A. M.; Neckers, D. C. Macromolecules 1998, 31, 951. (c) Hu, S.; Sarker, A. M.; Kaneko, Y.; Neckers, D. C. J. Photochem. Photobiol. A: Chem. 1998, 117, 67. (e) Grinevich, O.; Serguievski, P.; Sarker A. M.; Zhang, W.; Mejiritshi, A.; Neckers, D. C. Macromolecules 1999, 32, 328. (f) Marino, T. L.; Deraaff, A. M.; Neckers, D. C. Rad. Tech. '96 Proc. 1996, 7. (g) Feng, K.; Zang, H.; Neckers, D. C. Rad. Tech. '98 North Am. UV/EB Conf. Proc. 1998, 215.

(11) (a) Toba, Y.; Yasuike, M.; Usui, Y. J. Chem. Soc., Chem. Commun.
1997, 675. (b) Toba, Y.; Usui, Y.; Alam, M. M.; Ito, O. Macromolecules
1998, 31, 6022. (c) Toba, Y.; Yasuike, M.; Usui, Y. J. Photoscience 1998,
5, 63. (d) Toba, Y.; Usui, Y.; Konishi, T.; Ito, O.; Uesugi, T. Macromolecules
1999, 32, 6545.

(12) Bancroft, E. E.; Blount, H. N.; Janzen, E. G. J. Am. Chem. Soc. 1979, 101, 3692.

(13) Sullivan, B. P.; Dressick, W. J.; Mayer, T. J. J. Phys. Chem. 1982, 86, 1473.

(14) Nagamura, T.; Muta, S.; Shiratori, K. Chem. Phys. Lett. 1995, 238, 353.

(15) Watanabe, T.; Honda, K. J. Phys. Chem. 1982, 86, 2617.

(16) Heath, G. A.; McGrady, J. E.; Martin, R. L. J. Chem. Soc., Chem. Commun. 1992, 1272.

(17) Alam, M. M.; Watanabe, A.; Ito, O. J. Photochem. Photobiol. A: Chem. 1997, 104, 59.

(18) (a) Kosower, E. M.; Cotter, J. L. J. Am. Chem. Soc. 1964, 86, 5524.
(b) Kamogawa, H.; Masui, T.; Nanasawa, M. Chem. Lett. 1980, 1145.

(19) (a) Sension, R. J.; Phillips, C. M.; Szarka, A. Z.; Romanow, W. J.;
Macghie, A. R.; McCauley, J. P., Jr.; Smith, A. B., III; Hochstrasser, R.
M. J. Phys. Chem. 1991, 95, 6075. (b) Dimitrijievic, N. M.; Kamat, P. V.
J. Phys. Chem. 1992, 96, 4811. (c) Greaney, M. A.; Gorun, S. M. J. Phys.
Chem. 1991, 95, 7142. (d) Gasyna, Z.; Andrews, L.; Schatz, P. N. J. Phys.
Chem. 1992, 96, 1525.

(20) Ito, O.; Sasaki, Y.; Yoshikawa, Y.; Watanabe, A. J. Phys. Chem. 1995, 99, 9838.

^{(1) (}a) Guldi, D. M.; Hungerbühler, H. Asmus, K.-D. J. Phys. Chem. **1995**, 99, 13487. (b) Guldi, D. M. J. Phys. Chem. A **1997**, 101, 3895. (c) Imahori, H.; Sakata, Y. Adv. Mater. **1997**, 9, 537. (d) Imahori, H.; Yamada, K.; Hasegawa, M.; Taniguchi, S.; Okada, T.; Sakata, Y. Angew. Chem., Int. Ed. Engl. **1997**, 36, 2626. (e) Prato, M. J. Mater. Chem. **1997**, 7, 1097.